William F. Banholzer
Executive Vice President and Chief Technology Officer
March 22, 2011

The Challenge of Taking a New Idea into a Commercial Business

The Story of the Dow POWERHOUSE Solar Shingle

Global Megatrends

Why Dow Solar?

Energy Storage

Superior Materials:
Cathode
Anode
Electrolytes
Separator

Water Purification

Superior Materials: Energy efficiency improvements for reverse osmosis and ultrafiltration separations.

Energy Generation

Superior Materials:
Balance Of Systems
Aesthetics
Performance
Durability

Size is a Competitive Advantage

R&D Interests – Energy and the Environment

Systems:
AERIFY™ Diesel Particulate
Filters

Dow Building &
Construction:
Energy Efficient Roof & Wall
Solutions

Potential for Solar

Solar Capture Process	W/m²	Efficiency
Sugar Cane to Ethanol	0.60	0.30%
Energy Crop - Fermentation	0.70	0.32%
US Corn to Ethanol (gross)	0.32	0.16%
Algenol	4.0	2.0%
Wind Farm	4.0	2.0%
Concentrated Solar	3.2	1.6%
PV cell (10%)	20	10%

"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that."

Thomas Edison 1931

Issues:

- Intermittency
- Cost

Adapted from Mines ParisTech / Armines ©2006

W Banholzer 2012 Reilly Lecture Notre Dame

Dow Participation in Solar

- PEG cutting fluids
- Ethylcellulose paste binder
- Cleaning fluids & slurries
- Light induced plating
- Flexible front sheet materials
- EVA replacements
- Back sheet materials
- Adhesives
- Printed metallization
- Liquid acrylics
- Thermoplastics,
- UV curable liquid encapsulants
- Ion exchange resin
- HTTF for distillation & reduction
- Ultra pure water & waste water treatment
- Polycrystalline silicons
- Monosilane gas for thin films

DOW CORNING

BIPV

CIGS

Printed metallization

- TCOs for point contact
- Barrier layers
- CIGs inks
- Epoxies
- Adhesives
- Performance plastics
- XL EVA encapsulant films

BAPV

High Temperature Thermal Fluids Epoxies

CSP

Dow CSP

DOWTHERM™ A Heat Transfer Fluid

- Established relationships with important system OEMs
- Proven ability to deliver high volumes to remote locations
- Back integration to key raw materials

Addressable Market: 5,000 MW by 2020

Generating 400 MW of power in Spain and North America Supplying 250,000 homes with electrical power Reducing carbon emissions by 800,000 MT annually

Silicon Based Cells

Silicon Based Solar

Crystalline Polysilicon Cells

6 decades of proven performance World class IP

HSC is leading world supplier

DOW CORNING

\$3,200 MM/year market 20% annual growth

Dow PV Encapsulants & Backsheets

- **UV** resistance
- Electrical resistivity
- Reduced water transmission
- Chemical stability

\$500 MM/year market 30% annual growth \$1B by 2011

Silicones: Durable & Transparent

- Frame sealing/bonding
- Structural bonding
- Junction box potting agents
- Adhesives

Encapsulation

Dow BIPV

NEW Addressable Market: ~\$5B by 2015 compared to ~\$1B for niche PV

Solar – The Same Challenges

PV cells alone do not make a business

SOLYNDRA received:

More than \$1 billion from venture capital

\$535 million from DOE

\$59 million in revenue \$108 million of costs of goods sold 17.2MW of CIGS panels shipped- Bankrupt

Firm Dana Nam Farana	Sector	Date	
Dago New Energy	Solar Poly	IPO withdrawn Jan 2010	
Solyndra	CIGS solar panels	IPO withdrawn June 2010	
Trony Solar	a-Si solar	IPO withdrawn Aug 2010	

Thin films - a challenging space

Excluding First Solar there are now 170 companies in the sector and more than \$2 billion invested over 2 years timeframe.

< 100MW sold in 2008

www.gtmresearch.com/report/thin-film-2010-market-outlook-to-2015 www.renewableenergyworld.com/rea/blog/post/2010/05/whats-coming-for-solar-thin-film

http://www.nrel.gov/analysis/pdfs/46025.pdf

Major Obstacles to Residential BIPV Adoption

SunPower

- Cost = \$7.50-9.00/Watt installed
- Requires premium s-tiles/concrete roofing tiles

Atlantis SunSlate

•Cost = \$13-\$15/Watt

Requires premium roofing slates

Heavy (Si panels + fiber cement slate)

Labor intensive

Roof Integrity/Warranty

Installation Complexity

Aesthetics

Head to Head Competition

The Challenges of Supply

Builder Direct,
Building Material Distributor,
Solar Integrator

Markets Selection

Reroofing, Retrofit, Commercial, Residential, New Construction

Example: Solar Integrator / Residential New Construction

Requires: New Supply Chain (Packaging, Order Logistics)
Define Sales Location, Product Claims, Warranty, Product Awareness,
Regional Codes & Standards, Installation Guides, Inverter Selection,
Training, Data Monitoring Selection, etc....

Codes and Standards

MIAMI DAMP HEAT

MIDLAND SNOW & ICE

PHOENIX DRY HEAT

W Banholzer 2012 Reilly Lecture Notre Dame

Thousands of In-house and Agency Tests 300,000 Man Hours Of Engineering Building, Safety, and Performance Codes

Underwriters Laboratories

UL790 TEST CLASS A BEST RATING

HANDLING & INSTALLATION

HAIL & INCLEMENT WEATHER

0443 (PV) TAS 100-95 ASTM D635 IEC 61646

UL 790 0445 Plastics UL 1897 UL 746 ASTM E1929 UL 514 ASTM DS2843 UL 1703

ASTM DS2843

Success......

Or Failure?

20 year life product
Generates profit
Excellent roofing properties
Excellent electricity generation
Strong consumer demand

Reliability is not optional

First Solar Q4 Financials, 2012 **Guidance: Challenges Ahead**

In order to thrive, First Solar must deploy 65 GW of photovoltaic panels over the next decade.

First Solar is addressing a product which will cost hundreds of millions beyond its product warranty. The CEO, Mike Ahearn, referred to the product failure as a manufacturing excursion.

Panchabuta-Renewable Energy

First Solar admits to increased failure rates in hot climates like India

POSTED BY PANCHABHUTHA - MARCH 6, 2012 - LEAVE A COMMENT

Reliability Targets

Key question:

Where do you position New Product?

Balance cost and reliability

Has the reliability target been established?

And does the test protocol validate the target?

Reliability Targets

Concept to Commercialization Expensive

Systems Approach

The Product

1 Shingle

1 String 10's of Shingles

1 Inverter
100's of components

1 Grid tied array
10's End pieces
100's Power electronics
100's of Shingles

Establish performance & reliability targets based on system look

Reliable Process and Product Design

System

1 Grid tied array

Sub-system

1 Inverter

10's End pieces

100's Power electronics

100's of Shingles

Component

100's of connections

1000's welds

1000's of discrete pieces

System Reliability

Component Reliability

Sub-system Reliability

Robust Design for noise variables like environment and installation

Reliable Process and Product Design

Calculating Acceleration Factors

Calculate equivalent exposure stress

Temp range → 65-125 C
 Temp interval → 15 C

Prop change

Prop change

vs. time

Time

stress level

Challenges of Material Design and Selection

Materials Challenges

- Over 20 Materials With Different Material Properties
- Over 40 Interfaces Of Materials
- Over 15 Assembly Steps

Over Mold Material PV Barrier Vertical Disblatement [mm] +4.097e+000 -4.689e+001 +3.689e+000 +2.874e+00 +2.874e+00 +2.874e+00 +1.651e+00 +1.244e+00 +1.244e+00 +2.077e-02 -3.868e-01 -7.945e-01 Temp. profile: 85 °C → 23 °C Calculated : 4.89 mm

Minimizing Warpage Through FEA

$$\begin{split} \frac{\partial T_{ij}}{\partial x_{j}} &= \frac{\partial T_{ij}}{\partial X_{k}} \frac{\partial X_{k}}{\partial x_{j}} = 0 & \textit{Equilibrium} \\ E_{ij} &= \frac{1}{2} \bigg(\frac{\partial u_{i}}{\partial X_{j}} + \frac{\partial u_{j}}{\partial X_{i}} + \frac{\partial u_{k}}{\partial X_{i}} \frac{\partial u_{k}}{\partial X_{j}} \bigg) & \textit{Strain} \\ u_{i} &= x_{i} - X_{i} & \textit{Displacement} \end{split}$$

Energy (work) Balance On Multiple Layers

Understanding design-material interaction

Material Properties & Design

Temperature, Stress, Strain, design...

Fatigue, Aging Properties,

Interface Properties...etc

Modulus, CTE, Density, Elastic/Plastic Properties,

$$\int_{S} t_{i} \delta u_{i} dS + \int_{V} f_{i} \delta u_{i} dV = \int_{V} T_{ij} \delta E_{ij} dV$$

$$Traction \qquad Body$$

$$Force \qquad Force$$

W Banholzer 2012 Reilly Lecture Notre Dame

Hydrostable Material Selection

- Tests conducted under multiple accelerated conditions of temperature and humidity
- Failure defined as 50% property change
- Acceleration factor calculated based on the time to failure at each stress condition
- Performance of material 1 inadequate
- Confidence bounds at real stress wide → Handled for material 2 by shifting the mean

Component level testing used successfully to mitigate material degradation risk in product

Stress Reduction at the Interfaces

Explore design-material space to reduce stress at critical interface

The Challenges in Building a Plant

Major Considerations

- Clear Business Case and Alignment
- Project Staffing
- Site Selection
- Permitting
- Front End Loading
- Subject Matter Expert Input
- Risk Assessment & Mitigation Planning
- IPA Project Reviews
- Estimating and Schedule Management
- Construction Safety Management
- Start Up Budget and Staffing Plan

Determine Size and Risk

- Larger capacity of first plant means:
 - Low module cost -Lower flexibility
 - Standardization
- -Higher capital
- -Higher risk
- -Higher base cost

IPA Project Review

Intellectual Property Strategy – A Must

For a <u>single product</u>, Freedom to Operate and IP Requirements include:
30-40 patents
5 man years or more of effort
\$650MM in filing and Freedom to Operate
\$10MM in Maintenance Fees over 20 Years

What Else Can Go Wrong?

Thank You

Alternative Sources

Silicon Based Solar

Crystalline Polysilicon Cells

- 6 decades of proven performance
- World class IP
- HSC is leading world supplier

\$3,200 MM/year market 20% annual growth

DOW CORNING

Dow PV Encapsulants & Backsheets

- **UV** resistance
- Electrical resistivity
- Reduced water transmission
- Chemical stability

\$500 MM/year market 30% annual growth \$1B by 2011

Silicones: Durable & Transparent

- Frame sealing/bonding
- Structural bonding
- Junction box potting agents
- Adhesives
- Encapsulation

William F. Banholzer Executive VP and Chief Technology Officer The Dow Chemical Company March 2010

DOW

Abstract

The creation of a financially successful product or process from an inventive idea is quite complex. In this talk, the challenge of managing Dow's \$1.7 billion R&D budget, including project selection, risk management, and portfolio optimization, will be addressed. The DOW POWERHOUSE™ Solar Shingle (http://www.dowsolar.com/) is a case study that illustrates the multitude of decisions required to commercialize a new energy product. Managing the technical, market and supply chain risks and working with government and industry programs and codes are among the topics that will be discussed.

Deciding What to Work On

What is the cost? Is it sustainable?

Have we defined proper control volumes?

What are the TECHNICAL risks? MARKET risks?

- Once you decide on a pathway
 - failure is NOT an option!

For a successful technology, reality must take precedence over public relations, for Nature cannot be fooled.

- Richard Feynman

